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Molecular and functional characterization of adipokinetic hormone receptor
and its peptide ligands in Bombyx mori
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Neuropeptides of the adipokinetic hormone (AKH) family are among the best studied hormone pep-
tides, but its signaling pathways remain to be elucidated. In this study, we molecularly characterized
the signaling of Bombyx AKH receptor (AKHR) and its peptide ligands in HEK293 cells. In HEK293
cells stably expressing AKHR, AKH1 stimulation not only led to a ligand concentration dependent
mobilization of intracellular Ca2+ and cAMP accumulation, but also elicited transient activation of
extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. We observed that AKH receptor was rap-
idly internalized after AKH1 stimulation. We further demonstrated that AKH2 exhibited high activ-
ities in cAMP accumulation and ERK1/2 activation on AKHR comparable to AKH1, whereas AKH3 was
much less effective.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Adipokinetic hormones (AKHs) produced by the insect corpora
cardiaca are among the most extensively characterized peptide
hormones with almost 40 family members from most of the major
insect orders [1–7]. AKH is normally 8–10 amino acids long with a
pyroglutamate at the N-terminus and an amidated C-terminus. In
addition to the essential role of mobilization of metabolites during
energy-expensive activities such as flight and locomotion, AKH is
involved in the control of carbohydrate homeostasis in the haemo-
lymph of Drosophila and Bombyx larvae [8,9]. As shown in Table 1,
in Bombyx, a non-apeptide identical with Manduca AKH (AKH1) has
been chemically identified [10], and recently another two cDNAs
encoding the prepro-Bombyx AKH2, and 3 have been annotated
chemical Societies. Published by E
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and identified by combining homology search with cDNA cloning
[11].

The receptor of AKH was first identified as a typical G protein-
coupled receptor (GPCR) from the fruitfly Drosophila melanogaster
and the silkworm Bombyx mori in 2002 [12], and then from the
cockroach Periplaneta americana [13] and African malaria mosquito
Anopheles gambiae [14]. Previous biochemical characterization
with isolated fat body suggested that AKH binds to its receptor
and activates adenylyl cyclase via the Gs protein, which results
in an increase of intracellular cAMP levels. In addition, AKH acti-
vates phospholipase C (PLC) to induce the release of Ca2+ from
intracellular Ca2+ stores [15–17]. However, the mechanistic details
of AKHR signaling remain to be further elucidated.

In this present study, we cloned the AKHR from the fat body of
the silkworm B. mori and further functionally characterized it and
its peptide ligands in HEK293 cells. We conclude that after activa-
tion of AKHR, in addition to cAMP accumulation and Ca2+ release
from Ca2+ stores, the mitogen-activated protein kinase (MAPK)
pathway is subsequently activated and AKHRs are rapidly internal-
ized from the plasma membrane upon agonist stimulation. AKH1
and AKH2 activated AKHR with similar affinity, but AKH3 exhibits
almost much less activity on AKHR. These findings provide a
lsevier B.V. All rights reserved.
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Table 1
Primary structure of adipokinetic hormone peptides from Bombyx mori.

Adipokinetic peptides Sequence Ref.

Adipokinetic hormone 1 (AKH1) pGlu-Leu-Thr-Phe-Thr-Ser-Ser-Trp-GlyNH2 [10]
Adipokinetic hormone 2 (AKH2) pGlu-Leu-Thr-Phe-Thr-Pro-Gly-Trp-Gly-GlnNH2 [11]
Adipokinetic hormone 3 (AKH3) pGlu-Ile-Thr-Phe-Ser-Arg-Asp-Trp-Ser-GlyNH2 [11]
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foundation for future studies of the physiological role of AKH/
AKHR signaling in the diapauses, development and reproduction
of Bombyx.

2. Materials and methods

2.1. Materials

Larvae and pupae of the silkworm strain Feng-Yi were kindly
provided by Dr. Kerong He (Zhejiang Agricultural Institute). Cell
culture media and G418 were purchased from Invitrogen (Carls-
bad, CA). The pEGFP-N1 and pCMV-Flag vectors were purchased
from Clontech Laboratories Inc. (Palo Alto, CA) and Sigma (St. Louis,
MO), respectively. The membrane probe DiI and nuclear dye Hoe-
chst33258 were purchased from Beyotime (Haimen, China). Per-
tussis toxin (PTX) and cholera toxin (CTX) were purchased from
Sigma and Calbiochem (Cambridge, MA), respectively. Primary
antibodies for Western blotting were purchased from Cell Signal-
ing (Danvers, MA) and Beyotime.

2.2. Cell culture and transfection

The human embryonic kidney cell line (HEK293) was main-
tained in Dulbecco’s Modified Eagles Medium (DMEM, Invitrogen)
supplemented with 10% heat-inactivated fetal bovine serum (Hy-
clone) and 2 mM L-glutamine (Invitrogen). The AKHR cDNA plas-
mid constructs were transfected or co-transfected into HEK293
cells using Lipofectamine 2000 (Invitrogen) according to the man-
ufacturer’s instructions. Forty-eight hours after transfection, selec-
tion for stable expression was initiated by the addition of G418
(800 lg/ml). Transfected cells were evaluated for expression of
AKHR at the cell surface by flow cytometry.

2.3. Cloning of Bombyx AKHR cDNA and construction of mammalian
expression vectors

Total RNA was isolated from the fat body of pupae of B. mori
using the TRIzol reagent (Keygen, Nanjing, China) following the
manufacturer’s instructions. The cDNA was prepared with an
AMV First Strand cDNA Synthesis Kit (Sangon, Shanghai, China)
according to the manufacturer’s instructions. To amplify the full-
length sequence encoding Bombyx AKHR, two pairs of primers
were designed based on the sequence of GenBank Accession No.
AF403542 and are as follows: forward primer 50-AAGCTTATGGA-
TATAGACGAGAAAGTGTCC-30; reverse primer 50-TCTAGATTAAAC-
CATACCGTTCGTTACGTG-30 for pCMV-Flag; and forward primer
50-AAGCTTGCCACCATGGATATAGACGAGAAAGTGTCC-30; reverse
primer 50-GGTACCGTAACCATACCGTTCGTTACGTGGTT-30 for pEG-
FP-N1. The corresponding PCR products were inserted into the Hin-
dIII and XbaI sites of the pCMV-Flag vector and the HindIII and
KpnI sites of the pEGFP-N1 vector, named these two vectors Flag-
AKHR and AKHR–EGFP, respectively. All constructs were se-
quenced to verify the correct sequences and orientations.

2.4. cAMP accumulation measurement

After seeding in a 24-well plate overnight, 293 cells stably co-
transfected with Flag-AKHR and pCRE-Luc were grown to 90–95%
confluence, stimulated with the indicated concentration of AKH
in DMEM without FBS and incubated for 4 h at 37 �C. Luciferase
activity was detected by use of a firefly luciferase assay kit (Ken-
real, Shanghai, China). When required, cells were treated overnight
with PTX (100 ng/ml) or CTX (300 ng/ml) in serum-free DMEM be-
fore the start of the experiment.

2.5. Intracellular calcium measurement

Calcium mobilization was performed as described previously
with slight modifications [18]. The stable Flag-AKHR-expressing
293 cells were harvested with Cell Stripper (Mediatech, Herndon,
VA), washed twice with phosphate-buffered saline, and resus-
pended at 5 � 106 cells/ml in Hanks’ balanced salt solution con-
taining 0.025% bovine serum albumin. The cells were then loaded
with 3 lM fura-2/AM (Molecular Probes, Eugene, OR) for 30 min
at 37 �C. Calcium flux was measured using excitation wavelengths
of 340 and 380 nm in a fluorescence spectrometer (LS55, Perkin–
Elmer Life Sciences).

2.6. Immunoblot analysis

The 293 cells stably expressing Flag-AKHR seeded in six-well
plates were starved by growth in serum-free media overnight.
After stimulation with AKH, cells were lysed. Equal amounts of to-
tal cell lysates were size-fractionated by Tris–glycine SDS–PAGE
(10%) and transferred to a PVDF membrane (Millipore). Mem-
branes were blocked in blocking buffer TBST containing 5% non-
fat dry milk for 1 h at room temperature (RT) and then probed with
rabbit monoclonal anti-p-extracellular signal-regulated kinase 1/2
(ERK1/2) antibody (Cell signaling, Danvers, MA) and next probed
with anti-rabbit HRP-conjugated second antibody (CHEMICON,
Temecula, CA) according to protocol of the products. b-Actin (Beyo-
time, Haimen, China) and total ERK1/2 (Cell signaling, Danvers,
MA) was assessed as a loading control after p-ERK1/2 chemilumi-
nescence detection using HRP-substrate purchased from Cell
signaling.

2.7. Internalization assay and fluorescence microscopy

For the internalization assay, 293 cells stably expressing AKHR–
EGFP were seeded in cover glass-bottomed six-well plates. After
treatment with AKH peptides at 37 �C for 60 min, 293 cells were
stained with the membrane probe DiI (Beyotime, Haimen, China)
at 37 �C for 5–10 min, fixed with 2% paraformaldehyde for
15 min, and finally incubated with Hoechst 33258 (Beyotime) for
cell nuclei staining for 10 min. The cells were mounted in mount-
ing reagent (DTT/PBS/glycerol). Fluorescence microscopy was per-
formed on a Zeiss LSM510 laser scanning confocal microscope
attached to a Zeiss Axiovert 200 microscope using a Zeiss Plan-
Apo 63 � 1.40 NA oil immersion lens.

2.8. Flow cytometry analysis

Cells (5 � 105) were washed with PBS supplemented with 0.5%
BSA and incubated with 10 lg/ml FITC-labeled anti-Flag M2 mono-
clonal antibody (Sigma, St. Louis, MO) in a total volume of 100 ll.
After incubating for 30 min at 4 �C, cells were fixed with 2%



C. Zhu et al. / FEBS Letters 583 (2009) 1463–1468 1465
paraformaldehyde in PBS and subjected to flow cytometry analysis
on a FACScan flow cytometer (Coulter EPICS Elite, Coolten Corp.,
Hialeah, FL).

2.9. Peptide synthesis

The AKH peptides (Table 1) were prepared by solid-phase syn-
thesis using the Fmoc strategy on a 430A peptide synthesizer (Ap-
plied Biosystems, Foster City, CA) and a 9050 Pepsynthesizer Plus
(Perceptive Biosystems, Cambridge, MA) and purified by prepara-
tive reverse-phase high-performance liquid chromatography using
a Dynamax-300 Å C18 25 cm � 21.4 mm ID column with a flow
rate of 9 ml/min and two solvent systems of 0.1% TFA/H2O and
0.1% TFA/acetonitrile.

3. Results

3.1. Expression and cellular localization of AKHR

We cloned the adipokinetic hormone receptor (AKHR) cDNA
from the fat body of pupae of the silkworm B. mori by RT-PCR,
Fig. 1. Expression of AKHR in stably transfected HEK293 cells. (A) HEK293 cells
stably expressing AKHR–EGFP (GFP) were stained with a membrane plasma probe
(DiI) and a nuclei probe (Hoechst 33258). (B) The cell surface expression of the
stably transfected HEK293 cells was analyzed by FACS. Stable 293 cells were
analyzed for cell surface expression of Flag-AKHR by flow cytometry using the anti-
Flag mAb M2. Bars represent the mean fluorescence intensity for cells expressing
Flag-AKHR. All data are shown as means ± S.E. from at least three independent
experiments.
and constructed two vectors to express AKHR with either a Flag-
tag at the N-terminus or enhanced green fluorescent protein
(EGFP) at the C-terminus. After transfection of HEK293 cells with
Flag-AKHR and AKHR–EGFP, stably expressing cells were selected
by the addition of 800 lg/ml G418, and confirmed by FACS analysis
and fluorescent microscopy (Fig. 1A and B). As shown in Fig. 1A,
significant cell surface expression was detected by fluorescent
microscopy with minimal intracellular accumulation in the ab-
sence of AKH1.

3.2. cAMP accumulation and intracellular calcium mobilization in
AKHR expressing cells stimulated by AKH peptides

cAMP accumulation depends upon the coupling of AKHR to G
proteins. To evaluate the role of AKHR in stimulating cAMP produc-
tion, a stable cell line co-transfected with Flag-AKHR and pCRE-Luc
was established. Upon stimulation with different concentrations of
AKH1 peptides, the cAMP inside of the cells accumulated in a dose-
dependent manner with an EC50 of 6.4 nM. As a control, no change
in the cAMP level was detected in parental HEK293 cells (Fig. 2A
and C). Pre-treatment with 100 ng/ml PTX was found to have no ef-
fect on cAMP generation in Flag-AKHR-expressing cells stimulated
by AKH1, whereas stimulation with CTX led to a remarkable in-
crease in the cellular levels of cAMP (Fig. 2B), suggesting that cou-
pling of the Gs protein was involved in the AKHR signaling
pathway in 293 cells.

Bombyx AKHR was further evaluated by an assay that is depen-
dent upon ligand activation of the phospholipase C signaling path-
way resulting in mobilization of intracellular Ca2+ from the ER pool
to the cytoplasm. We then examined the effects of AKH1 peptides
on the intracellular Ca2+ change in the AKHR-expressing cells using
the calcium probe fura-2. As indicated in Fig. 2D, AKH1 peptides
did not affect the Ca2+ fluxes in the parental HEK293 cells, but, in
parallel, elicited a rapid increase of Ca2+ in the Flag-AKHR-express-
ing cells in a dose-dependent manner, as demonstrated by previ-
ous reports [15,19].

3.3. AKH1 mediates activation of MAPK pathway in AKHR-expressing
cells

To investigate whether the activation of AKHR in stably trans-
fected cells stimulates the phosphorylation of ERK1/2, the cells
seeded in six-well plates were treated with AKH1 peptides, and as-
sessed using a phospho-specific antibody known to bind only to
the phosphorylated and activated forms of these kinases [20].
Fig. 3 shows that activation of AKHR elicited transient phosphory-
lation kinetics of ERK1/2 with maximal phosphorylation evident at
2–5 min and a return to almost basal levels by 15 min. By contrast,
treatment with AKH1 did not provoke any appreciable effects on
ERK1/2 in the parental 293 cells or transiently mock-transfected
293 cells. Fig. 3C illustrates the concentration dependence of
AKH-mediated ERK1/2 phosphorylation and activation, with
ERK1 and -2 phosphorylation increased significantly by nanomolar
concentrations of AKH1 and a maximal ERK1/2 phosphorylation of
at least three times the basal level.

3.4. Rapid internalization of AKH receptors upon activation by AKH1

In order to visualize the internalization and trafficking of AKHR,
we constructed a vector to express a chimeric protein in which en-
hanced green fluorescent protein (EGFP) is fused to the C-terminal
end of AKHR (AKHR–EGFP) and established a stable HEK293 cell
line expressing AKHR–EGFP. Observation of stable AKHR–EGFP-
expressing HEK293 cells with fluorescence microscopy revealed
that the fluorescence of AKHR–EGFP was mainly localized in the
plasma membrane, and to a lesser extent in intracellular vesicles.
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Fig. 2. AKH-induced cAMP accumulation and intracellular Ca2+ mobilization in HEK293 cells stably expressing Flag-AKHR. (A) cAMP accumulation in HEK293 cells transiently
co-transfected with CRE-Luc and Flag-AKHR was determined in response to AKH1 treatment (2 lM). (B) Effects of PTX or CTX on AKH-mediated stimulation of cAMP
accumulation in Flag-AKHR/CRE/HEK293 cells. HEK293 cells were transiently co-transfected with Flag-AKHR and CRE-Luc, and pre-treated with PTX (100 ng/ml) or CTX
(300 ng/ml) overnight prior to incubation with AKH (2 lM) for 4 h. (C) cAMP accumulation in HEK293 cells stably expressing Flag-AKHR/CRE-Luc was assayed in response to
different doses of AKH1. Data are expressed as the means ± S.E. (n = 3). (D) Intracellular Ca2+ influx in non-transfected 293 cells or 293 cells stably expressing Flag-AKHR was
measured in response to different concentrations of AKH1 peptide using the fluorescent Ca2+ indicator fura-2. The figures are representative of more than three independent
experiments.
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Upon activation of AKHR–EGFP with ligand, the receptor was rap-
idly and dramatically redistributed in the cytoplasm with distinct
perinuclear accumulation. The internalization of AKHR–EGFP was
detectable 5 min after AKH1 stimulation, and reached a maximum
within 30 min (Fig. 4).

3.5. Functional comparison of newly cloned AKH2 and AKH3 peptides
with AKH1

In Bombyx, recently another two distinct cDNAs encoding the
prepro-AKH2, and 3 have been cloned [11], but never be character-
ized. We synthesized Bombyx AKH2 and AKH3 peptides (Table 1)
and determine their functional activities on AKHR. As shown in
Fig. 5, although AKH2 exhibited high activity in inducing cAMP accu-
mulation (EC50 = 11.7 ± 1.6 nM) (Fig. 5A) comparable to AKH1
(EC50 = 6.4 ± 1.9 nM), showed lower activities in ERK1/2 phosphory-
lation (Fig. 5B) and receptor internalization (Fig. 5C) than that of
AKH1. AKH3 did also activated AKHR in cAMP accumulation
(EC50 = 1.07 ± 0.33 lM) with a much lower potency than that of
AKH1 and AKH2 (Fig. 5A), but showed no activities on AKHR in
ERK1/2 phosphorylation and receptor internalization (Fig. 5B and C).

4. Discussion

The signaling of AKH peptides has been studied in a few insects,
but only in selected pathways such as cAMP and Ca2+ [19]. To date,
most of our knowledge on signal transduction of the AKH peptide
is derived from biological assays and use of purified fat cell mem-
branes [21,22]. In this study, we molecularly and functionally
characterized the signaling pathway of Bombyx AKHR, and demon-
strated that activation of Bombyx AKHR not only led to cAMP accu-
mulation and transient intracellular Ca2+ influxes in stable HEK293
cells, consistent with previous reports using biological assays and
purified fat cell membranes, but also elicited transient activation
of ERK1/2 pathway.

ERK1/2 has emerged as important effectors for GPCRs, and can
be used to measure the functional outcome of receptor stimulation
[23,24]. Therefore, characterization of the signaling pathways that
stimulate ERK1/2 phosphorylation through a particular receptor is
essential to understand its role in physiology and pathology. The
ability of the Bom-AKHR to activate the phosphorylation of ERK1/
2 in HEK293 cells and the determination of the G proteins’ respon-
sibilities for coupling the AKHR to MAPK activation are examined in
Fig. 3A. As shown in Fig. 3B and C, AKH induced a time- and concen-
tration-dependent increase in MAPK activity. AKH-stimulated
MAPK activity was maximal at 5 min of stimulation and the activity
persisted for about 15 min. ERK1/2 phosphorylation have been re-
ported to be involved in the regulation of lipid metabolism includ-
ing regulation of contraction-induced activation of muscle
hormone sensitive lipase (HSL) [25] and regulation of contraction-
induced acetyl-CoA carboxylase phosphorylation and subsequent
long-chain FA oxidation in mammalian cells [26,27]. Further inves-
tigations will be required to define the role of ERK1/2 in the trans-
duction of the hyperlipaemic signal in insects.

The green fluorescent protein (GFP) has been widely used to
study the localization, distribution, and function of other proteins



Fig. 3. Activation of ERK1/2 by AKH1. (A) AKH1 induce pERK1/2 only in transfected cells, not in controls of the experiment. (B) Time course of AKH-stimulated
phosphorylation of ERK1/2 in stable AKHR-expressing HEK293 cells, cells were incubated with 10 lM AKH1 for the indicated times. (C) Concentration-dependent activation
of ERK1/2 phosphorylation by AKH1 in HEK293 cells stably expressing Flag-AKHR. Cellular lysates were immunoblotted with phospho-specific (top lane) and non-specific
(bottom lane) anti-ERK1/2 antibody, as described in Section 2. The results are representative of at least three independent experiments.
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by fusion expression in different systems. In this study, an expres-
sion vector of Bombyx AKHR fused with EGFP at its C-terminus was
constructed and expressed stably in HEK293 cells for easy visuali-
Fig. 4. Time course of AKHR–EGFP internalization induced by AKH1. Cells were
incubated with 10 nM AKH at 37 �C for the indicated times, and after washing
fixing, were examined by fluorescence microscopy as described in Section 2. The
results are representative of three independent experiments.
zation of receptor localization, internalization and trafficking.
Compared to the wild-type AKHR, AKHR–EGFP was found to be ex-
pressed and function normally. We showed for the first time that,
upon binding and activation by AKH peptide, AKHR was rapidly
internalized in a dose- and time-dependent manner. Further inves-
tigation of receptor trafficking and recycling is under way in our
lab.

In Bombyx, a non-apeptide AKH1 has been first identified [10],
and quite recently Roller et al. identified another two distinct
cDNAs encoding the prepro-Bombyx AKH2, and 3. Bombyx
AKH1 is identical to non-apeptides found only in moths, while
Bombyx AKH2 is closely related to many other AKH/HrTH deca-
peptides. Although previous studies indicated that the Heliothis
zea hypertrehalosaemic hormone (Hez-HrTH) activated Bombyx
AKHR with a higher affinity than that of AKH1 [12], in our re-
search, we demonstrated that AKH2 exhibit comparable activi-
ties in intracellular cAMP accumulation to AKH1, but much
lower activities in phosphorylation of ERK1/2 and receptor inter-
nalization than that of AKH1. In structure, Bombyx AKH2 is clo-
sely related to Hez-HrTH, but with three amino acids different,
these three amino acids may be responsible for the differences
of activation on Bombyx AKHR between Bombyx AKH2 and
Hez-HrTH. Bombyx AKH3 is more closely related to non-lepidop-
teran AKH peptides, and was much less effective in activating
Bombyx AKHR we tested in this study, strongly implying that it
is more likely that a second intrinsic AKHR exists as a high affin-
ity receptor for AKH3 in Bombyx. The identification of AKHR-
mediated signaling pathways is of importance to obtain a better
understanding of the role of AKH/AKHR in the regulation of the
molecular events responsible for sugar homeostasis and energy
mobilization.



Fig. 5. Signaling activities and receptor internalization induced by synthesized
AKH2 and AKH3 peptides. (A) cAMP accumulation in HEK293 cells stably
expressing Flag-AKHR was assayed in response to different doses of AKH2 and
AKH3. (B) Activation of ERK1/2 phosphorylation by different doses of AKH2 and
AKH3 in HEK293 cells stably expressing AKHR was assayed as described in Section
2. (C) Induction of AKHR–EGFP internalization by AKH2 and AKH3. The stably Flag-
AKHR-transfected 293 cells were treated with indicated concentrations of peptide
for 45 min at 37 �C. The results are representative of at least three independent
experiments.
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